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Exact �Hartree-Fock� exchange is needed to overcome some of the limitations of local and semilocal
approximations of density-functional theory. So far, however, computational cost has limited the use of exact
exchange in plane-wave calculations for extended systems. We show that this difficulty can be overcome by
performing a unitary transformation from Bloch to maximally localized Wannier functions in combination with
an efficient technique to compute real-space Coulomb integrals. The resulting scheme scales linearly with
system size. We validate the scheme with representative applications.
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I. INTRODUCTION

Electronic structure calculations based on density-
functional theory �DFT� have been very successful in studies
of molecular and condensed-matter systems. To date most
DFT applications to extended material systems have used the
local-density approximation �LDA� or the semilocal general-
ized gradient approximation �GGA� for exchange and
correlation.1 These approximations are numerically efficient
but suffer from serious drawbacks. In particular, the spurious
self-interaction of each electron with itself, occurring with
local and semilocal functionals, may lead to a poor descrip-
tion of tightly bound electronic states.2

These deficiencies are less severe when hybrid functional
approximations for exchange and correlation are adopted.3,4

In this approach some exact exchange energy is mixed into
the exchange-correlation energy functional. Extensive appli-
cations to molecular systems have shown that hybrid func-
tionals are generally superior to GGA in the description of
structural and electronic properties.4 Applications to ex-
tended systems have been so far relatively scarce even
though available studies suggest that hybrid functionals
should provide a better description of the electronic proper-
ties of insulating materials.5–7

The main reason for the lack of applications of hybrid
functionals to extended systems is the considerable compu-
tational cost of evaluating the exact exchange energy, par-
ticularly within the plane-wave-pseudopotential approach
that is most frequently used for electronic structure calcula-
tions. This has limited most applications to systems with a
small unit cell. When large supercells are needed, such as,
e.g., in ab initio molecular-dynamics �AIMD� simulations,8 a
screened exchange approximation9 is often used to alleviate
the computational burden of hybrid functionals.10

In this work, we present an accurate and efficient scheme
for computing the exact exchange energy and potential for
large molecules and extended insulating systems. Our
scheme can be easily included in existing plane-wave codes
and has computational cost that scales linearly with system
size. The approach is based on a unitary transformation of
the occupied subspace from Bloch to �maximally� localized
Wannier functions �MLWFs�.11 MLWFs are exponentially lo-
calized and, since the exchange between two orbitals is re-
stricted to the spatial region of orbital overlap, the amplitude

of the exchange interaction between two MLWFs decays rap-
idly with the distance between their centers. Thus, typically
each Wannier orbital exchanges only with a finite number of
neighboring orbitals and the number of pair interactions per
orbital is independent of system size.12 As a result, our pro-
cedure to compute exact exchange is order N, i.e., its com-
putational cost scales linearly with system size. We demon-
strate the effectiveness of our approach in two representative
applications using the Perdew-Burke-Ernzerhof �PBE0�
�Ref. 13� hybrid functional for exchange and correlation. In
one we perform a ground-state electronic and structural op-
timization for crystalline silicon; in the other we perform a
finite temperature AIMD simulation for the same system.

II. FORMALISM AND METHOD OF CALCULATION

In the following we assume, for simplicity, a closed-shell
system with N /2 doubly occupied one-electron states. Exten-
sion to spin-polarized systems is straightforward. The PBE0
�Ref. 13� total-energy functional can be written as

EPBE0 = −
1

2�
i

��i��2��i� +� Vion�r�n�r�dr

+
1

2
� � n�r�n�r��

�r − r��
drdr� + Eion�	RI
� + Exc

PBE0,

�1�

where n�r�=2�i=1
N/2��i�r��2 is the electronic density, N is the

total number of electrons, and the �i are the occupied one-
electron orbitals, and atomic units �a.u.: �=m=e2=1� are
adopted. As in standard DFT formulations using LDA or
GGA functionals, the first four terms in Eq. �1� represent the
electronic kinetic energy, the potential energy of the elec-
trons in the field of the nuclei, the average electrostatic in-
teraction among the electrons, and the electrostatic repulsion
between the nuclei, respectively. Here we adopt a pseudopo-
tential formulation. Thus the sums extend to the valence
states only while n�r� and �i denote pseudodensity and
pseudowave functions, respectively. The last term on the
right-hand side of Eq. �1� is the PBE0 exchange-correlation
energy,13 Exc

PBE0, given by

PHYSICAL REVIEW B 79, 085102 �2009�

1098-0121/2009/79�8�/085102�5� ©2009 The American Physical Society085102-1

http://dx.doi.org/10.1103/PhysRevB.79.085102


Exc
PBE0 =

1

4
Ex +

3

4
Ex

PBE + Ec
PBE. �2�

Here Ex denotes exact exchange, Ex
PBE is the PBE exchange,

and Ec
PBE is the PBE correlation functional.14 The exact ex-

change energy Ex has the Hartree-Fock expression in terms
of the one-electron �pseudo�orbitals:

Ex = − 2�
i,j
� � �i

��r�� j
��r��� j�r��i�r��
�r − r��

dr�dr . �3�

The ground-state energy is obtained by minimizing the en-
ergy functional �Eq. �1�� with respect to the occupied orbit-
als. This leads to the one-particle equations:

�−
1

2
�2 + Vion�r� + VH�r� +

3

4
Vx

PBE�r� + Vc
PBE�r�
�i�r�

+
1

4
� Vx�r,r���i�r��dr� = �i�i�r� , �4�

where VH�r� and Vion�r� are the Hartree and the ionic
�pseudo�potentials, respectively. Vx

PBE�r� and Vc
PBE�r�, the

PBE exchange and correlation potentials, depend on the elec-
tron density and its gradient at position r. The exact ex-
change potential Vx�r ,r�� is the nonlocal integral operator of
Hartree-Fock theory. It is given by

Vx�r,r�� = − 2�
j

� j
��r��� j�r�
�r − r��

. �5�

We notice that the above procedure is not strictly a Kohn-
Sham scheme. The latter would require an exchange poten-
tial given by the functional derivative of the exchange energy
with respect to the electron density rather than with respect
to the orbitals. Since the explicit functional dependence of
the exact exchange energy on the density is not known,
implementation of a strict Kohn-Sham scheme would require
a special procedure such as, e.g., the optimized effective po-
tential �OEP� method.4 The latter would be considerably
more computationally expensive than our approach while
giving essentially the same ground-state energies.4

The action of V̂x�r ,r�� on the orbital �i in Eq. �4� is an
orbital dependent term Dx

i �r� given by

Dx
i �r� �

�Ex

��i
� = − 2�

j
� dr�

� j
��r���i�r��� j�r�

�r − r��
. �6�

Equation �6� shows that Dx
i �r� includes the exchange inter-

actions of the orbital �i with all the occupied orbitals � j
�including the self-interaction�. Usually in extended system
implementations,7 each pair interaction in Eq. �6� is evalu-
ated in reciprocal space taking advantage of the convolution
theorem15

� dr�
� j

��r���i�r��
�r − r��

→ 4�
�ij�G�
�G�2

, �7�

where �ij�G� is the Fourier transform of �ij�r�=�i�r�� j�r�.
This can be calculated using the fast Fourier transform �FFT�
algorithm at a cost proportional to NFFT ln�NFFT�, where NFFT

is the size of the plane-wave grid. Thus, if the functions 	�i

are delocalized throughout the entire supercell, evaluating
Eq. �7� for all orbital pairs would result in an overall com-
putational effort proportional to N2�NFFT ln�NFFT�. Neglect-
ing the weak logarithmic dependence, this amounts to cubic
scaling with size. While plane-wave LDA or GGA calcula-
tions have cubic scaling with size, they only require a num-
ber of FFTs that scales linearly with N. The need to perform
a number of FFTs that scales quadratically with N is what
makes traditional plane-wave implementations of the hybrid
functional method very expensive.

Instead of evaluating the exact exchange in terms of de-
localized Bloch orbitals 	�i
, we choose to work with ML-
WFs 	�̃i
. This requires a unitary transformation of the oc-
cupied subspace, �̃i=� j=1

N/2Uij� j, which leaves the ground-
state energy invariant. In terms of the MLWFs Dx

i �r�
becomes

Dx
i �r� = − 2�vii�r��̃i�r� + �

i�j
vij�r��̃ j�r�
 , �8�

where the self-interaction �vii� and the pair-exchange �vij�
potentials satisfy the Poisson equations

�2vii = − 4��̃ii, �2vij = − 4��̃ij . �9�

Here, �̃ij�r�= �̃i�r��̃ j
��r�. In the hybrid functional formalism

the contribution associated to vii�r� in Eq. �8� partially can-
cels the spurious self-interaction present in the Hartree po-
tential VH�r� in Eq. �4�. The contribution associated to the
pair potential vij�r� in Eq. �8� gives the exchange interaction
for two electrons of equal spin residing in different orbitals.
The potential vij �when i is either equal to or different from
j� can be viewed as the electrostatic potential generated by
the charge distribution �̃ij�r�.

In the Wannier representation it is convenient to work in
real space. This point is illustrated in Fig. 1. Since the ex-
change interaction is only present in the region where two

FIG. 1. �Color online� Overlap between a tagged Wannier or-
bital �red at the center� and its nearest neighboring Wannier orbitals
�blue� in the 64-atom Si supercell. Si atoms are denoted by the
green spheres.
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orbitals overlap, i.e., where �̃ij�0, the pair potential vij�r� is
conveniently calculated by solving the corresponding Eq. �9�
in a spatial region significantly smaller than the simulation
cell. Moreover only a small subset of orbitals �̃ j contributes
to the exchange interaction with a tagged orbital �̃i.

We have implemented the above method in the CP code
of the QUANTUM-ESPRESSO package.16 In the following, we
apply our approach to compute the electronic ground state, to
optimize the cell parameter, and to carry out an AIMD simu-
lation for crystalline Si in the diamond structure using the
PBE0 functional. In these calculations we used supercells
ranging from 64 to 216 atoms. In all the calculations we used
a PBE norm-conserving pseudopotential with �3s3p� va-
lence. The plane-wave energy cutoff was 15 Ry and we
sampled the Brillouin zone at the k=0 point �� point�. For
comparison we also performed PBE0 calculations with the
same pseudopotential and plane-wave cutoff using the con-
ventional reciprocal space method to calculate exact ex-
change as implemented in the PWSCF code of QUANTUM-
ESPRESSO. These calculations were performed on the Si two-
atom unit cell using a large set of k points to sample the
Brillouin zone.

In our approach, we first perform a ground-state calcula-
tion using the semilocal PBE functional. Then, given the
PBE Kohn-Sham eigenstates 	�i�G�
, we construct the cor-
responding MLWFs 	�̃i�G�
 �in reciprocal space� by itera-
tively minimizing the spread functional.17 The corresponding
MLWFs in real space, 	�̃i�r�
, are obtained by FFT and are
represented on a uniform real-space mesh. In the Si diamond
structure, each MLWF is centered in the midpoint between
two adjacent atoms and overlaps significantly with the six
nearest neighboring orbitals, as shown in Fig. 1.

Since the density �̃ij�r� is known for each pair of orbitals,
we can associate with each pair of orbitals an orthorhombic
box with sides �lx

c , ly
c , lz

z� such that, outside this box, �̃ij�r� is
smaller than a given cutoff value �cut, which we take as equal
to 2�10−4 bohr−3 in the present work. We then solve Eq. �9�
inside the box. Notice that the box contains a greatly reduced
set of grid points compared to the simulation cell. For ex-
ample, in our 64-atom Si calculation the real-space grid
needed to compute the pair potential vij generated by two
adjacent orbitals contains only 20% of the mesh points of the
simulation cell. Even fewer points are needed to compute the
pair potential vij�r� generated by more distant orbitals. Since
the density �̃ij�r� is vanishingly small when the distance be-
tween the orbitals i and j is sufficiently large, many pair
interactions are negligibly small. We find that in our 64-atom
Si supercell each orbital exchanges appreciably only with 30
orbitals out of the set of 127 neighboring orbitals.

To solve the Poisson equation the Laplace operator �2 is
discretized on seven mesh points. The resulting finite differ-

ence equation has the form of a linear matrix equation of the
type Ax=b. The symmetric and positive-definite square ma-
trix A is sparse and has dimension n, where n is the number
of mesh points inside the reduced box. The vector x corre-
sponds to the unknown vij�r�, and the �known� vector b cor-
responds to the pair density �̃ij�r�. The values of vij�r� at the
boundary of the box are set by the multipole expansion

vij�r� = 4��
l,m

1

2l + 1
qlm

Ylm�	,
�
rl+1 , �10�

where the multipoles qlm are given by the integrals

qlm =� Ylm
� �	�,
��r�l�̃ij�r��dr�. �11�

In Eq. �11� the Ylm are spherical harmonics referred to the
center of the pair density, which we define by Rij

c

��r�̃ij�r� /��̃ij�r�. We found that inclusion of multipoles up
to l=6 is sufficient to achieve good accuracy.

Solving the linearized Poisson equation Ax=b is equiva-
lent to finding the vector x that minimizes the function
f�x�= 1

2xTAx−bTx+c, where c is an arbitrary constant. This
minimization is efficiently performed with the conjugate gra-
dient �CG� method.18 We terminate the CG iteration when
the residue in the calculation of vij�r� is everywhere smaller
than 10−5 a.u. In order to calculate the Dx

i in Eq. �8� we need
to evaluate the products vij�r��̃ j�r� in the region where
��̃ j�r��2��cut. This region may include points outside the box
associated to the pair density �̃ij�r� but values of vij�r� out-
side that box are easily obtained from the multipole expan-
sion in Eq. �10�.

Having calculated the Dx
i �r�, the PBE0 ground state is

obtained by conventional electronic structure methods. Here
we optimize the electronic degrees of freedom via damped
second-order Car-Parrinello dynamics8,19 in which the
“force” acting on the orbitals, HPBE0�̃i�r�, includes the addi-
tional Dx

i �r� terms to account for exact exchange. Finally, the
exchange energy Ex is given by the sum of the energies of
the orbital pairs in the presence of the corresponding pair
potential vij�r�,

Ex = − 2�
ij
� �̃i�r��̃ j�r�vij�r�dr . �12�

The exchange energy in Eq. �12� can be viewed as a sum of
orbital contributions ex�i� :Ex=�iex�i�. The ith orbital contri-
bution ex�i� can be further decomposed into self-exchange
eself�i�=��̃i

2vii and pair-exchange epair�i�=� j�i��̃i�̃ jvij.

TABLE I. Contributions to the exchange energy ex �in a.u.� from shells of neighbors. R�I� is shell radius
�bohr� and N�I� is the coordination number of shell I. The experimental lattice constant a0=5.43 Å is used.

Shell I 0 1 2 3 4

R�I� 0 3.63 6.28 7.26 8.11

N�I� 1 6 12 12 12

ex�I� −0.465 −0.059 −0.002 −0.007 −0.0001
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III. RESULTS AND DISCUSSION

In Table I we report the calculated exchange energy per
orbital in crystalline Si using a 64-atom supercell. In this
system the MLWFs are all equivalent by symmetry, i.e., the
orbital index in ex�i� can be dropped. Moreover the MLWF
centers coincide with the bond centers and it is convenient to
group the pair-exchange contributions into contributions
originating from the different shells of neighbors of a bond
center. The table lists the shell index I �which is zero for the
central site, one for the first shell of neighbors, etc.�, the
corresponding shell radius R�I�, the corresponding coordina-
tion number N�I�, and the corresponding exchange energy
contribution ex�I�, with ex=�Iex�I�.

It is evident that the largest contribution to ex comes from
the self-interaction ex�0�, and that the exchange contributions
of the neighboring shells, ex�I�, with I=1,2 , . . ., goes rapidly
to zero with increasing shell radius. As a matter of fact the
exchange energy contribution of the fourth shell is only
1 /300th of the contribution due the first shell of neighbors.

In Table II, we report the calculated PBE0 ground-state
energy using two supercells: one with 64 atoms and one with
216 atoms. The results of the two calculations are compared
to the results obtained with the conventional reciprocal space
method using a two-atom unit cell. In the case of the two
large supercells we used � point sampling while we used two
large sets of k points in the conventional calculations as in-
dicated in the table. The two sets of calculations are in very
close agreement: the valence bandwidths �VBWs� are the
same while the slight differences in total energy can be at-
tributed to the differences in the k-point sampling.

As a further comparison we report in Table III the equi-
librium lattice constant a0 and the bulk modulus B0 calcu-
lated with a 64-atom Si supercell. We also report in the same
table the results of a conventional calculation with a two-
atom unit cell and a 4�4�4 k-point grid. Again, the results
of the two calculations are in excellent agreement.

In our approach, the computational cost of an exact ex-
change calculation depends on the number of pair exchanges

that need to be included to achieve a desired accuracy. Since
each orbital has exchange only with a finite number of neigh-
boring orbitals independently of the system size, the compu-
tational effort of the exact exchange calculation should scale
linearly with system size. Figure 2 shows that this is indeed
the case.

Finally, we demonstrate that our approach makes AIMD
simulations with hybrid functionals, such as PBE0, feasible
at a modest computational cost. In AIMD simulations a large
number of time steps, typically tens of thousands, are neces-
sary to obtain statistically meaningful results. As a conse-
quence AIMD simulations with hybrid functionals are very
challenging and so far have only been performed by making
some approximation, such as the screened exchange approxi-
mation, in the calculation of the exchange integrals.10 In our
approach we do not need to modify the Coulomb potential to
eliminate exchange interactions at large distance. These are
automatically truncated by the exponential decay of the ML-
WFs and all the relevant pair-exchange interactions are in-
cluded. To show the feasibility of AIMD simulations, we
tested our approach in a finite temperature simulation of a Si
sample with 64 atoms in a simple-cubic supercell geometry.
The simulation was initiated by randomly displacing the at-
oms from their crystalline sites while their velocities were set
to zero. The subsequent trajectories were obtained by nu-
merically integrating the Car-Parrinello equations of motion
with the standard Verlet algorithm.21 MLWF-based AIMD
trajectories were generated as described in Ref. 17, using the
PBE0 total-energy functional EPBE0 to compute the forces on
electronic and ionic degrees of freedom.

We plot in Fig. 3 the time variation along a nuclear tra-
jectory of EPBE0, i.e., the potential energy of the ions �nuclei

plus core electrons�, of their kinetic energy K=1 /2�IMIṘI
2,

and of the ionic internal energy U=K+EPBE0. The internal
energy is an exact constant of motion of classical nuclear
dynamics but is only approximately constant in Car-
Parrinello simulations due to the fictitious dynamics of the
electrons. Figure 3 shows that indeed U is approximately

TABLE II. Comparison of our real-space method and the recip-
rocal space method implemented in PWSCF. E denotes total �pseudo�
energy per atom �Rd� and VBW is the valence bandwidth �eV�.

Our approach PWSCF

k points Gamma 4�4�4 6�6�6

Natom /cell 64 216 2 2

E −7.865 −7.870 −7.867 7.873

VBW 13.3 13.3 13.3 13.3

TABLE III. Lattice constant a0 �Å� and bulk modulus
B0 �GPa� of a Si.

Our approach PWSCF Expt.a

a0 5.49 5.49 5.43

B0 100 99 99

aReference 20.

FIG. 2. Computational cost of exact exchange per iteration of
AIMD dynamics with different supercells. The computational cost
is given by the time �s� necessary to compute exact exchange on a
16-CPU 3.2 GHz Intel Xeon computer cluster.
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constant with minor fluctuations and no drift over the time
scale of the simulation. This is the typical behavior observed
in standard simulations of insulating systems based on LDA
or GGA functionals. We conclude that our real-space treat-
ment of exact exchange does not lead to any appreciable
degradation of the quality of the integrated trajectories com-
pared to standard AIMD simulations.

The AIMD trajectory reported in Fig. 3 was obtained on a
16 CPU PC cluster and took 34 s of real time per time step.
For comparison a standard GGA simulation for the same
system would take only 2.5 s per time step on the same
computational platform. This example shows that while hy-

brid functional calculations remain more expensive than
GGA calculations, AIMD trajectories lasting for many ps are
possible with access to moderate computer resources. More-
over the order-N cost of the exact exchange calculation
means that the overhead of hybrid functional calculations
should be a comparatively smaller fraction of the overall
computational cost in simulations on bigger systems.

IV. SUMMARY

In conclusion we have developed an order-N method to
compute exact exchange in extended insulating systems. By
exploring the locality of maximally localized Wannier func-
tions, we calculate the orbital dependent exchange potential
and the corresponding exchange energy contribution directly
in real space. The approach is sufficiently efficient to make
AIMD simulations with hybrid functionals possible and can
be effectively implemented on parallel computer platforms.
Its computational efficiency should be even better for large
band-gap systems such as, e.g., water, where the MLWFs are
more localized than in silicon. Since exact exchange is a
basic ingredient in many-body approaches to electronic ex-
citations, such as, e.g., the GW scheme,22 our approach
should facilitate the application of these schemes to systems
requiring large supercells, such as liquids and disordered sys-
tems in general.23
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